5-Methylcytosine Recognition by Arabidopsis thaliana DNA Glycosylases DEMETER and DML3

نویسندگان

  • Sonja C. Brooks
  • Robert L. Fischer
  • Jin Hoe Huh
  • Brandt F. Eichman
چکیده

Methylation of cytosine to 5-methylcytosine (5mC) is important for gene expression, gene imprinting, X-chromosome inactivation, and transposon silencing. Active demethylation in animals is believed to proceed by DNA glycosylase removal of deaminated or oxidized 5mC. In plants, 5mC is removed from the genome directly by the DEMETER (DME) family of DNA glycosylases. Arabidopsis thaliana DME excises 5mC to activate expression of maternally imprinted genes. Although the related Repressor of Silencing 1 (ROS1) enzyme has been characterized, the molecular basis for 5mC recognition by DME has not been investigated. Here, we present a structure-function analysis of DME and the related DME-like 3 (DML3) glycosylases for 5mC and its oxidized derivatives. Relative to 5mC, DME and DML3 exhibited robust activity toward 5-hydroxymethylcytosine, limited activity for 5-carboxylcytosine, and no activity for 5-formylcytosine. We used homology modeling and mutational analysis of base excision and DNA binding to identify residues important for recognition of 5mC within the context of DNA and inside the enzyme active site. Our results indicate that the 5mC binding pocket is composed of residues from discrete domains and is responsible for discrimination against 5mC derivatives, and suggest that DME, ROS1, and DML3 utilize subtly different mechanisms to probe the DNA duplex for cytosine modifications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic interactions between DNA demethylation and methylation in Arabidopsis.

DNA demethylation in Arabidopsis (Arabidopsis thaliana) is mediated by DNA glycosylases of the DEMETER family. Three DEMETER-LIKE (DML) proteins, REPRESSOR OF SILENCING1 (ROS1), DML2, and DML3, function to protect genes from potentially deleterious methylation. In Arabidopsis, much of the DNA methylation is directed by RNA interference (RNAi) pathways and used to defend the genome from transpos...

متن کامل

Domain structure of the DEMETER 5-methylcytosine DNA glycosylase.

DNA glycosylases initiate the base excision repair (BER) pathway by excising damaged, mismatched, or otherwise modified bases. Animals and plants independently evolved active BER-dependent DNA demethylation mechanisms important for epigenetic reprogramming. One such DNA demethylation mechanism is uniquely initiated in plants by DEMETER (DME)-class DNA glycosylases. Arabidopsis DME family glycos...

متن کامل

Excision of 5-hydroxymethylcytosine by DEMETER family DNA glycosylases.

In plants and animals, 5-methylcytosine (5mC) serves as an epigenetic mark to repress gene expression, playing critical roles for cellular differentiation and transposon silencing. Mammals also have 5-hydroxymethylcytosine (5hmC), resulting from hydroxylation of 5mC by TET family-enzymes. 5hmC is abundant in mouse Purkinje neurons and embryonic stem cells, and regarded as an important intermedi...

متن کامل

DNA demethylation in the Arabidopsis genome.

Cytosine DNA methylation is considered to be a stable epigenetic mark, but active demethylation has been observed in both plants and animals. In Arabidopsis thaliana, DNA glycosylases of the DEMETER (DME) family remove methylcytosines from DNA. Demethylation by DME is necessary for genomic imprinting, and demethylation by a related protein, REPRESSOR OF SILENCING1, prevents gene silencing in a ...

متن کامل

A discontinuous DNA glycosylase domain in a family of enzymes that excise 5-methylcytosine

DNA cytosine methylation (5-meC) is a widespread epigenetic mark associated to gene silencing. In plants, DEMETER-LIKE (DML) proteins typified by Arabidopsis REPRESSOR OF SILENCING 1 (ROS1) initiate active DNA demethylation by catalyzing 5-meC excision. DML proteins belong to the HhH-GPD superfamily, the largest and most functionally diverse group of DNA glycosylases, but the molecular properti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014